
By: Yufan Xu

Case Study:
Recipe App (Web 

App Version)



Objective 
&

Purpose

The objective was to create a fully fledged web 
application version of a recipe app, where users can 
sign up for an account for full access to the app. 
Registered users can view recipes created by other 
users, create their own, and be able to modify and 
delete their own recipes only. Users should also be 
able to search and filter recipes, as well as view 
graphic representations that are displayed 
alongside the filtered results.



Tools Used
★ Python
★ Django
★ QuerySet
★ virtualenvwrapper

★ Matplotlib
★ Cloudinary
★ Koyeb
★ WhiteNoise

★ SQLite3
★ PostgreSQL
★ Pandas
★ pip



PROCESS:
The Framework

This application would need a database (to hold the information for each 
registered user and the recipes) and a frontend (the webpages and interface 
the user will see when the app is launched). Thus I would benefit from using 
the Django framework, which would

1) handle all the incoming requests from the user (for example, requesting the 
details of 1 specific recipe),

2) compile the page with the right content based on the data in the database 
and any custom logic I code using Python, and

3) render the correct web pages in the user’s browser via HTML templates. 
Django is a web-development framework with many features ready to be used 
out of the box, so it can greatly speed up the development process.



PROCESS:
The Framework

Using the Django framework, I set up the “models” for recipes and users by 
deciding things like the attributes they should have and the types of data for 
each attribute. These models would be used to create the database tables on 
the server side. I then considered the various pages the user would encounter 
while using the app and then created “views” (the logic) and corresponding 
“templates” (the HTML pages that would present the information to the user). 
I started with a homepage that all users would see once they open the app, 
recipe list view (all recipes), recipe details view (for each recipe), and a user 
profile view. Then later on as more functionality and features are added, I was 
able to implement these additional features by following Django’s app 
structure. 



PROCESS: 
Navigation

Django is structured so I can specify the routes to each module of the 
project and to each view within each module, but in terms of the user 
experience, it wasn’t easy for users to navigate between the various views 
and pages (other than directly changing the webpage’s url to pull the 
content we’re looking for). To solve this, I created a navigation bar that 
sits at the top of the interface with links that route users to the 
appropriate url endpoints, making the navigation much smoother. These 
links would change over the development process as views and 
functionality were added.



PROCESS:
Search & Visualization

Search functionality and chart visualizations were among the project requirements, so I 
implemented these within the “recipe” module (as opposed to the “user” module) by creating and 
displaying a form for users to enter the search criteria. I then used the QuerySet API to extract 
data from the database, filtering only the recipes that match the search criteria the user inputs 
into the form. I then converted the queryset to a pandas dataframe, which stores the data in 
tabular form and allows further data processing. 



Search & Visualization:
Challenge

I wanted an interface with a clean minimalistic style that was consistent throughout the app, and the dataframe format 
didn’t fit in. So I further converted the dataframe into a dictionary (a Python data structure that stores values in key:value 
pairs), which allowed me to access the specific attributes and values of each recipe and style them as desired.

★ The default format of the 
dataframe is a table (one that was 
not aesthetically pleasing).

Above: example of dataframe table from CareerFoundry course notes

#1



Search & Visualization:
Challenge

In generating the pie chart (count of recipes by difficulty level), I encountered the issue that the data I wanted to 
represent wasn’t readily available (the “difficulty level” was not a direct attribute of each recipe in the model but was 
instead calculated automatically by taking the number of ingredients and cooking time attributes). Thus, the dataframe 
did not include a “difficulty” column. So to access that, I had to first cycle through the filtered results in the queryset to 
calculate the difficulty level for each recipe and then add a new “difficulty” column to the dataframe. Then I could process 
that data and extract the value counts of each difficulty level included among the filtered results.

★ Generating the charts with 
information I desired (not readily 
available from the database).

#2



Search & Visualization:
Result

example of results from recipe search by ingredient “sugar”

(left: filtered recipes; right: visualization charts)



PROCESS:
Implementing Core Functions

The CareerFoundry course notes provide guidance for 
the project but did not cover the implementation of 
some core functions, like allowing users to sign up for 
an account (the “user” model wasn’t required to start) or 
allowing users to create, modify, and delete recipes. Up 
until this point, all these functions were done through 
the Django admin panel, where I created users and 
recipes for testing during development. Without further 
guidance, I had to work out the implementation myself.

I first coded forms (including for user signup, recipe 
creation, and recipe update) and related logic for processing 
the form input. I then decided where it would make logical 
sense to display these forms (for example, the signup form 
available on the login page and the recipe update option 
available on the details page of a recipe created by the user) 
and added the forms to the corresponding templates. I 
chose to incorporate these options as forms and messages 
in popup dialog boxes, so whole new HTML pages would not 
be necessary, and these forms and functions would be 
hidden until the user selects the corresponding button.



Implementing Core Functions
Result

example of “create recipe” function added to homepage as popup dialog

(above: homepage button; right: popup dialog when clicked)



PROCESS:
Personal Touch

From a user’s perspective, I thought the app could benefit from a little personal touch from the users, so there 
is more of a face behind each recipe. I had already created the user profile page to display the authenticated 
user’s information (name, photo, and bio). Now this wouldn’t be useful if no one else can see it except the 
current user, so I added a view that would display a selected user’s profile along with all their recipes. By 
clicking the recipe creator’s name in a recipe, it brings the user to the creator’s page, where they can learn a 
little about the person behind the recipe. If the logged-in user clicks into their own page, they will also see an 
additional button to add a new recipe from there as well.



PROCESS:
Personal Touch

example of viewing another 

user’s profile (left) and your 

own profile (right), both with 

default profile images (if none 

is uploaded)



PROCESS:
Deployment

Two of the biggest challenges of the project 
came at the end when I thought everything was 
set and ready to be packaged for deployment - 
database configuration and the display of static 
and media files.



Deployment:
Challenge

In development, Django creates a default SQLite database, but this cannot be used in production as it is file based and 
gets deleted every time the application restarts or if any variables change. So I started to configure the app and database 
for deployment with Heroku according to the course notes’ recommendation, but the deployment doesn’t happen 
successfully. The migrations were not being applied successfully, as if they were being erased or overwritten. After some 
research I had come to realize that Heroku no longer offers hosting of a PostgreSQL database for free, so I had to pay for 
a postgre add-on or find an alternative (or else it was still trying to run as a SQLite database). I researched some options 
for hosting and decided to use Koyeb for this project, as it offered a free web service (for the app) and a free managed 
PostgreSQL database that could be deployed alongside the web service. 

★ Database Configuration

#1



Deployment:
Challenge

The app has static files (the files that don’t change during production, 
like the background images, CSS files, etc.) and media files (recipe 
images and profile pictures that users upload). To host these files 
separately from the Django development web server, I had to make some 
changes. For static files, I utilized WhiteNoise, a middleware package 
that allows Django web apps to serve their own static files. The media 
files were trickier, as it turns out both Koyeb and Heroku no longer 
support saving media files in their free plans. 

★ Static and Media Files

#2

(right) example of recipes tiles without media images displaying



Deployment:
Challenge

I turned to a 3rd party service to bridge this gap, 
and I decided on Cloudinary for this purpose. 
The app already allowed users to upload images, 
so I just needed Cloudinary to provide the ability 
to store and retrieve these images. The Django 
Cloudinary Storage package seemed perfect for 
this use, as it allowed integration with Cloudinary 
by implementing Django Storage API and only 
required several lines of configuration. With this 
integration, my app finally works and looks the 
way I imagined it.

★ Static and Media Files

#2

(above) example of recipes tiles with media images displaying properly



REFLECTION

Overall I found this to be an enjoyable and rewarding 
project, as I got to learn about the basics of Python and the 
Django framework, as well as the configurations it takes to 
get a Django web app up and running. The Django 
framework follows a strict structure that may be 
restricting at times, but for a new developer like myself, it 
helped guide me to take certain steps.

I met many challenges in the process, but tackling these 
challenges aided me in gaining a clearer understanding of 

how Django’s structure and flow works. Especially towards 
the end of the project I was reminded of the fact that 

change happens quickly in the world of web development 
(because the course notes were no longer updated!) and the 

importance of problem solving.

For improvements, there are many features
that I would want to add when time permits to make the 
project more complete. This includes options to update user 
information and delete the profile, as well as username and 
password reset features. Then some nice-to-haves would be 
features like categorizing the recipes and the option to 
“bookmark” or save recipes for quicker reference.

I realized I should’ve envisioned the end
product more thoroughly early on, as I found myself 

returning to the models to incorporate missing information 
that I needed from the database. Changing the models 

midway through a project could cause issues with existing 
data, and it requires extra work, so next time I will make 

sure I spend more time defining the models on the first try.



THANK
YOU

Thank you for reading! If interested, you 
can explore the live application here.

https://sensible-elva-yuxu1-946856e4.koyeb.app/

